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Abstract

The robustness of motor outputs to muscle dysfunction has been investigated using muscu-

loskeletal modeling, but with conflicting results owing to differences in model complexity and

motor tasks. Our objective was to systematically study how the number of kinematic

degrees of freedom, and the number of independent muscle actuators alter the robustness

of motor output to muscle dysfunction. We took a detailed musculoskeletal model of the

human leg and systematically varied the model complexity to create six models with either 3

or 7 kinematic degrees of freedom and either 14, 26, or 43 muscle actuators. We tested the

redundancy of each model by quantifying the reduction in sagittal plane feasible force set

area when a single muscle was removed. The robustness of feasible force set area to the

loss of any single muscle, i.e. general single muscle loss increased with the number of inde-

pendent muscles and decreased with the number of kinematic degrees of freedom, with the

robust area varying from 1% and 52% of the intact feasible force set area. The maximum

sensitivity of the feasible force set to the loss of any single muscle varied from 75% to 26%

of the intact feasible force set area as the number of muscles increased. Additionally, the

ranges of feasible muscle activation for maximum force production were largely uncon-

strained in many cases, indicating ample musculoskeletal redundancy even for maximal

forces. We propose that ratio of muscles to kinematic degrees of freedom can be used as a

rule of thumb for estimating musculoskeletal redundancy in both simulated and real bio-

mechanical systems.
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Introduction

Musculoskeletal models have been used to explore motor redundancy, demonstrating how

muscle dysfunction impacts motor output. For example, the effects of muscle weakness have

been explored to understand gait deficits in cerebral palsy [1] and stroke [2, 3], as well as to

predict outcomes of interventions that alter muscle function such as strengthening, tendon

transfer [4], or botulinin toxin injection [5]. However, the kinematic description of the skeletal

system can greatly alter the predicted force output of muscle activation [6], while the number

of modeled muscles can alter model sensitivity to variations in muscle properties [7]; generally,

studies of muscle dysfunction have not considered the effect of model complexity.

Studies show conflicting results about the robustness in biomechanical capabilities of

human limb musculoskeletal models to the loss of a single muscle. Removing a single muscle

typically has little effect on the ability of a lower-limb musculoskeletal model to reproduce

experimentally-measured joint torques during walking [8, 9]. Specifically, single muscle dys-

function can be compensated for by other muscles, as the upper and lower bounds on feasible

muscle activation ranges span 0 to 1 across most of the gait cycle in most muscles. In contrast

the feasible muscle activation ranges for a finger model of static force production were tightly

bounded [10]. The same study also showed that static force production in both the human fin-

ger and leg can be dramatically compromised by single muscle loss, as indicated by the vulner-

ability in the feasible force set that characterizes the maximum endpoint force in all directions

[11, 12].

Such discrepancies in modeling studies of musculoskeletal redundancy likely arise from dif-

ferences in the number of kinematic degrees of freedom, number of muscles, and the task

examined. Planar leg models with three kinematic degrees of freedom (DoFs) and either nine

[13] or fourteen [10, 14] muscles have been used to investigate muscle function. Three-dimen-

sional (3D) models range from a human finger model with four DoFs and seven muscles [11],

to cat hindlimb models with seven DoFs and 31 muscles [15], and human lower leg models

with 23 DoFs and 92 muscles [9]. Such models have been used to examine variety of motor

tasks including standing balance, pedaling, isometric force generation, and walking. To our

knowledge, there has been no study systematically examining how various levels of model

complexity alter the robustness of the musculoskeletal system to muscle dysfunction within a

single motor task.

To resolve differences in prior literature, here we sought to explicitly examine how the kine-

matic complexity and the number of independent muscle actuators in a musculoskeletal

model alter the effects of muscle dysfunction on motor output for a single task. We compared

the robustness of six human leg models to single muscle loss during static force production.

The simplest planar model was similar to that used in Kutch and Valero-Cuevas (2011) [10],

and the most complex 3D model was similar to that used in Simpson et al. (2015) [9]. Because

our main objective was to directly compare the same measure of musculoskeletal redundancy

across models of varying complexity, including the sagittal plane model, we restricted our anal-

yses to endpoint force production in the sagittal plane. We show that robustness to muscle dys-

function decreases with the number of kinematic DoFs and increases with the number of

muscle actuators, and can greatly affect conclusions about how muscle strength affects bio-

mechanical function.

Materials and methods

We compared the robustness of six musculoskeletal models of the human leg to single muscle

loss during static force production in the sagittal plane. Models with low kinematic complexity

(Lo-DoF) had three planar DoFs; models with high kinematic complexity (Hi-DoF) had seven
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non-planar degrees of freedom. For each kinematic model, we simulated 14 muscle groups

(Lo-Mus), 26 (Int-Mus) muscle groups, and 43 independently controlled muscles (Hi-Mus).

For each model, we computed robustness and sensitivity to muscle dysfunction as the area of

the feasible force set preserved and reduced after the loss of any muscle (or muscle group),

respectively. As a further measure of redundancy, we tested whether feasible muscle activation

ranges at maximal force production were constrained or allowed a range of muscle activation

levels. All models, data, and codes for reproducing our results are available from the Dryad

Digital Repository: https://doi.org/10.5061/dryad.28pj314 [16].

Musculoskeletal models

We used a generic 3D musculoskeletal model of human leg (OpenSim Gait2392 [17]) with

seven kinematic DoFs (Hip: 3, Knee: 1, Ankle: 2, MTP: 1) and 43 muscles/muscle compart-

ments (Table 1). Posture was set to that resembling the mid-phase of pedaling at which experi-

mental and model-based feasible force sets has been identified previously [13]: 48˚ hip flexion,

0˚ hip adduction, 0˚ hip rotation, 53˚ knee flexion, 33˚ ankle plantarflexion, 0˚ subtalar inver-

sion, 0˚ metatarsophalangeal (MTP) joint angle. We selected such posture as it pertains to

maximal force generation during pedaling, and also avoids singularity in joint torque to end-

point force mapping. The pelvis was fixed in space and the endpoint defined as the location of

the MTP joint, which was pinned to the ground via a gimbal joint.

To systematically alter model complexity, we created six models from the generic OpenSim

model that varied in numbers of kinematic DoF and muscles. Two levels of kinematic DoF

complexity were used: all seven DoFs allowing 3D motion (Hi-DoF) and three sagittal plane

flexion/extension DoFs at the hip, knee, and ankle (Lo-DoF). Three sets of muscles were used:

the complete set of 43 muscles with independent control (Hi-Muscle), a reduced set of 26 mus-

cles with independent control (Int-Muscle), and a reduced set of 26 muscles with 14 indepen-

dent muscles/muscle groups (Lo-Muscle) (see Table 1), similar to Kutch & Valero-Cuevas

(2011). For completeness, we also created an alternative intermediate set of muscle actuators

(alt-Int-Muscle) that used all 43 muscle models but with only 26 31 independent controls. The

results from alt-Int-Muscle did not affect the general message of the results and were therefore

not reported (data available [16]).

Feasible force sets

To compute feasible force sets representing the bounds in biomechanical capability of each

model in generating static endpoint forces, we first defined a linear mapping between endpoint

force and muscle activation:

RFMact a
*
¼ JTF

*

end ¼ t
*

net; ð1Þ

where R is the moment arm matrix, FMact is a diagonal matrix of the maximum active muscle

force each muscle can produce for the given muscle posture, a* is the muscle activation vector,

J is the Jacobian matrix that maps the end-point wrench into the resultant net joint torques

(t
*

net), and F
*

end is the endpoint wrench vector, however designated as force as moments were

constrained to be zero. The moment arm matrix R was obtained by OpenSim [17], communi-

cated via an application programming interface (API) to MATLAB (Mathworks, Inc., Natick,

MA, USA). The API was used to extract muscle tendon unit length, maximum isometric force,

optimal fiber length, tendon slack length, and pennation angle at optimum fiber length for

each muscle. These parameters and the force-length relationship from an existing Hill-type

muscle model [18] were used to calculate the active muscle force matrix, FMact [19]. To calculate
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Table 1. Muscles included in each model and their abbreviations.

Muscle Name Abbreviation

“Lo-Muscle” Model “Int-Muscle” Model “Hi-Muscle” Model

14 muscles 26 muscles 43 muscles

Gluteus medius anterior 1 1 GMED1 1 GMED1

Gluteus medius middle 2 2 GMED2 2 GMED2

Gluteus medius posterior 3 GMedMin 3 GMED3 3 GMED3

Gluteus minimus anterior 4 4 GMIN1 4 GMIN1

Gluteus minimus middle 5 5 GMIN2 5 GMIN2

Gluteus minimus posterior 6 6 GMIN3 6 GMIN3

Semimembranosus 7 7 SEMIMEM 7 SEMIMEM

Semitendinosus 8 HAM 8 SEMITEN 8 SEMITEN

Biceps femoris long head 9 9 BFLH 9 BFLH

Biceps femoris short head 10 BFSH 10 BFSH 10 BFSH

Sartorius 11 SAR

Adductor longus 12 ADDL 12 ADDL 12 ADDL

Adductor brevis 13 ADDBREV

Adductor magnus superior 14 ADDMAG1

Adductor magnus middle 15 ADDMAG2

Adductor magnus inferior 16 ADDMAG3

Tensor fascia latae 17 TFL 17 TFL 17 TFL

Pectinueus 18 PECT

Gracilis 19 GRAC

Gluteus maximus anterior 20 20 GMAX1 20 GMAX1

Gluteus maximus middle 21 GMax 21 GMAX2 21 GMAX2

Gluteus maximus posterior 22 22 GMAX3 22 GMAX3

Iliacus 23 ILIAC 23 ILIAC 23 ILIAC

Psoas 24 PSOAS

Quadratus femoris 25 QUADF

Gemellus 26 GEM

Piriformis 27 PIRI

Rectus femoris 28 RF 28 RF 28 RF

Vastus medialis 29 29 VM 29 VM

Vastus intermedius 30 VAS 30 VI 30 VI

Vastus lateralis 31 31 VL 31 VL

Gastrocnemius medial head 32 GAS 32 MEDGAS 32 MEDGAS

Gastrocnemius lateral head 33 33 LATGAS 33 LATGAS

Soleus 34 SOL 34 SOL 34 SOL

Tibialis posterior 35 TP 35 TP 35 TP

Flexor digitorum longus 36 FLEXD

Flexor hallucis longus 37 FLEXH

Tibialis anterior 38 TA 38 TA 38 TA

Peroneus brevis 39 PBREV 39 PBREV 39 PBREV

Peroneus longus 40 PLONG

Peroneus tertius 41 PTERT

Extensor digitorum longus 42 EXTD

Extensor hallucis longus 43 EXTH

Each gray box for the “Lo-Muscle” Model indicates grouped muscles.

https://doi.org/10.1371/journal.pone.0219779.t001
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the Jacobian, J, we converted the OpenSim leg model to Neuromechanic software [20], which

has a function for numerically calculating the Jacobian between specified points on the model.

We computed each feasible force set in the joint torque space, utilizing the linear relationship

between endpoint force to net joint torque (Eq 1), because the Jacobian transpose for some models

was not invertible to define a direct linear mapping between muscle activation and endpoint force.

As in prior studies [21, 22], we used linprog.m in MATLAB to find a* that maximizes t
*

net in each

of the torque directions for 300 evenly spaced unit wrench vectors, F̂dir, in the sagittal plane:

maxa* jt
*

net � J
TF̂dirj s:t: t

*

net jj JTF̂dir and 0
*

� a
*
� 1

*

: ð2Þ

Note from Eq 1 that t
*

net ¼ RFMact, and in above equation (Eq 2) that JTF̂dir is the projection of F̂dir
into torque space. Thus, the goal was to find a vector a* that maximizes the magnitude of t

*

net along

the direction of vector JTF̂dir.
Maximal endpoint force, F

*

end MAX, in each specified direction was computed by multiply-

ing the relative magnitude of the actual torque vector to the unit force vector:

F
*

end MAX ¼ kt
*

netk
�
kJTF̂dirkF̂ dir: ð3Þ

Each feasible force set was defined as the convex polygon that contained all sagittal plane com-

ponents of F
*

end MAX as determined by the convhull.m function in MATLAB [22]. Although

our feasible force set was comprised of only the sagittal plane forces, optimization (Eq 2) was

solved with six-dimensional wrench vectors (F̂dir) that had non-zero elements only for the sag-

ittal plane force components. Also note that solution to above optimization for 3D models

(Hi-DoF) must satisfy the net torque requirements (Eq 1) in all of the seven DoFs, including

the three non-sagittal DoFs. Activations of muscles that were grouped in the Lo-Muscle Model

(Table 1) were constrained to be the same.

Robustness and sensitivity of feasible force set to single muscle loss

The impact of muscle dysfunction on motor output was determined by examining the effect of

single muscle loss on feasible force set area in the sagittal plane [10]. Single muscle loss was

simulated by constraining a single muscle’s activation level to zero and recalculating the feasi-

ble force set. Robustness and sensitivity of the feasible force set to single muscle loss was

defined as the percent area that was preserved and lost by loss of a given muscle, respectively.

By definition, sensitivity+robustness = 100%, such that an increase in muscle redundancy

would be indicated by an increase in feasible force set robustness to single muscle loss and a

decrease in feasible force set sensitivity to single muscle loss.

While we quantified and report both robustness and sensitivity to single muscle loss for

each muscle in each model, we focused our analyses of robustness and sensitivity to two differ-

ent types of single muscle loss: general and specific single muscle loss, respectively. To charac-

terize general capability of the model to maintain motor output against any potential muscle

loss of muscle function, we first focused on examining the robustness of each feasible force set

to general single muscle loss, defined as the percent area of the feasible force set unaffected by

the loss of any single muscle (Fig 1, green hashed areas), i.e. the intersection of all the feasible

force sets resulting from specific single muscle loss. To compare feasible force set area and

robustness across models, sagittal plane feasible force set areas were normalized to that of the

simplest model Lo-Muscle/Lo-DoF.

To characterize muscle-specific deficit at motor output, on the other hand, we focused on

examining the sensitivity of each feasible force set to specific single muscle loss, i.e. sensitive
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region of the feasible force set that gets lost after dysfunction of a particular muscle (Fig 2, see

inset, blue area). In addition, we examined how grouping muscles, a simplification often used

in literature (e.g. Lo-Muscle model in our study), affects the feasible force set sensitivity to sin-

gle muscle (group) loss.

Feasible muscle activation ranges at maximum force

To quantify redundancy in muscle space, we identified feasible ranges of activation in individ-

ual muscles for maximal force in each model in all sagittal plane force directions. We used lin-

ear programming to find the upper and lower bounds on each individual muscle’s activation

[15] at each maximum endpoint forces F
*

end MAX:

JT F
*

end MAX ¼ RFMact a
*
; ð4Þ

Fig 1. Sagittal plane feasible force sets (FFSs) and their robustness and sensitivity to general single muscle loss.

Feasible force sets (blue regions) represent the set of all biomechanically feasible force vectors that each model can

produce at the endpoint, defined as the location of the MTP joint, assuming independent activation of individual

muscles. The area of each feasible force set in the sagittal plane is normalized with respect to that from the Lo-Muscle/

Lo-DoF model. Robustness and sensitivity of each feasible force set to general single muscle loss is quantified by the

percentage of the feasible force set occupied and unoccupied, respectively, by the robust region (green hashed regions),

defined as the set of forces unaffected by the loss of any single muscle. Feasible force sets in the top row (A, B, and C)

were created with three planar DoFs (Lo-DoF), while feasible force sets on the bottom row (D, E, and F) are from

models with seven, three-dimensional DoFs. Feasible force sets in the left column (A and D) are from models with a

grouped, reduced set of muscles (Lo-Muscle), totaling 14. The feasible force sets in the middle column (B and E) are

from models with an independent, reduced set of 26 muscles (Int-Muscle). The feasible force sets in the right column

(C and F) are from models with a set of 43 independent muscles (Hi-Muscle). In each panel, nMusc and nDoF stands

for number of muscles and number of degrees of freedom, respectively.

https://doi.org/10.1371/journal.pone.0219779.g001
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The minimum and maximum values of each element of a*; ai were identified one at a time,

allowing the remaining elements of a* to vary (from 0 to 1) as necessary,

mina*ai s:t: J
T F

*

end MAX ¼ RFMact a
*

ð5Þ

mina* � ai s:t: J
T F

*

end MAX ¼ RFMact a
*
: ð6Þ

Feasible muscle activation ranges were classified based on their width as determined
(width = 0), undetermined (width > 0), or unconstrained (width = 1).

Results

Intact feasible force sets were qualitatively similar to previous reports in humans [10, 13] and

animals [21] in that they were roughly elliptical with the axis approximately aligned with the

Fig 2. Sensitivity and robustness of feasible force sets (FFSs) to specific single muscle loss. The inset (top right) shows the preserved (green) and lost (blue) area of

the feasible force set when one muscle, VL, is removed in the Hi-Muscle/Lo-DoF model. The sensitivity of the feasible force set to specific single muscle loss is defined as

the percent reduction of the feasible force set to loss of each individual muscle. Results are presented for all muscles in ascending orders for sensitivity (blue bars) and

descending order for robustness (green bars) for each model (each panel). The distribution of feasible force set sensitivity to single muscle loss is quantified by a box plot

(right side of each graph) and the values corresponding to each quartile are extended across each graph.

https://doi.org/10.1371/journal.pone.0219779.g002
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limb axis, and the largest forces directed distally from the endpoint (Fig 1, blue areas). In gen-

eral, feasible force set area increased with the number of independent muscles (Fig 1, left to

right), and decreased with number of kinematic degrees of freedom (Fig 1, top to bottom); the

decrease in Hi- vs. Lo-DoF models was less pronounced in the Int-Muscle and Hi-Muscle

models.

Effect of model complexity on robustness to general single muscle loss

Feasible force set robustness to the loss of any single muscle increased with the number of

independent muscles (Fig 1, green areas). Lo-Muscle model feasible force sets were the small-

est and least robust to general single muscle loss (Fig 1A and 1D), while the Int-Muscle model

feasible force sets were slightly larger and significantly more robust to general single muscle

loss (Fig 1B and 1E). Hi-Muscle model feasible force sets had the largest area and were the

most robust to general single muscle loss (Fig 1C and 1F). However, larger feasible force set

areas did not always correspond to greater robustness to general single muscle loss (compare

Fig 1A and 1E).

Lo-DoF models were more robust than Hi-DoF models to the loss of any single muscle, but

these differences were much less pronounced as the number of independent muscles increased

(Fig 1, percent decrease from Lo-DoF to Hi-DoF: Lo-Muscle: 90%, Int-Muscle: 36%, and Hi-

Muscle: 6%). Feasible force set robustness to general single muscle loss was approximately 50%

in Hi-Muscle models, regardless of the number of DoFs.

Effect of model complexity on sensitivity to specific single muscle loss

Feasible force set sensitivity to loss of a single muscle (Fig 2, blue bars) decreased as the num-

ber of independent muscles increased (Fig 2, left to right) and was higher in Hi-DoF models

(Fig 2, top to bottom). The effects of increasing DoFs was less pronounced in models with

more independent muscles.

The maximum sensitivity of the feasible force set to the loss of a single muscle decreased

sharply as the number of independent muscles increased. In Lo-Muscle/Lo-DoF and Lo-Mus-

cle/Hi-DoF, the maximum single muscle loss sensitivities were 68% and 75%, respectively,

both due to loss of VAS (abbreviation defined in Table 1, Fig 2A and 2D). However, the maxi-

mum sensitivity was about 3 times smaller in Hi-Muscle models (26% for both Lo- and Hi-

DoF) due to loss of VL (Fig 2C and 2F).

The loss of particular muscles had drastically different effects on the feasible force set in Hi-

DoF versus Lo-DoF models. For example, the Int-Muscle/Lo-DoF feasible force set was least

sensitive to PBREV (0% sensitivity, Fig 2B) while Int-Muscle/Hi-DoF feasible force set was

most sensitive to PBREV (50% sensitivity, Fig 2E).

Grouping muscles increases sensitivity to single muscle loss

Feasible force set sensitivity to single muscle (group) loss increased dramatically when muscles

were grouped. Sensitivity to loss of a muscle group in the Lo-Muscle model (e.g. Fig 3A (VAS)

and 3D (HAM), blue areas) was much larger than the sensitivity to loss of the corresponding

muscles in the Int-Muscle model (e.g. Fig 3B (VM, VI, and VL) and 3E (SEMIMEM, SEMI-

TEN, and BFLH), blue areas). Only when all of the participating muscles were removed from

the Int-Muscle model, was the remaining feasible force set equivalent to loss of the grouped

muscle in the Lo-Muscle models (e.g. compare Fig 3A with 3C, and 3D with 3F). More than

half of the muscles to which the Hi-Muscle model feasible force sets were most sensitive (top

�20% in Fig 2C and 2F) were part of grouped muscles in the Lo-Muscle models (Fig 2A and

2D). The sum of the sensitivities to loss of the independent muscles within each group was
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approximately equal to the sensitivity of the loss of the entire group (e.g. compare Fig 3A with

3B, and Fig 3D with 3E). Discrepancies were due to slight differences in total feasible force set

area causing differences in sensitivity to single muscle loss across models (e.g. SOL: 11.6% vs

12.2% sensitive in Lo/Lo vs Int/Lo Models, Fig 2A and 2B).

Wide feasible muscle activation ranges for maximal force production

The degree of possible variation in a single muscle’s activity for maximal force production var-

ied widely across muscles and force directions, ranging from being fully determined to fully

unconstrained. Feasible muscle activation ranges at maximum force for each muscle (Fig 4)

varied between 0 and 1, (Fig 4, inner and outer circles, respectively) during maximum force

production across all sagittal plane directions. Feasible muscle activation ranges were deter-
mined to a single value in some directions (Fig 4A, width = 0, green solid lines), while undeter-
mined in other directions (Fig 4A width>0, green shaded area), delineating the range of

muscle activation for which it is possible to produce a maximal force in that direction.

Only the hip-knee bi-articular muscles were fully determined in maximum sagittal plane

force production (Lo-Muscle: 3 of 14 muscles, Int-Muscle: 5 of 26 muscles, Hi-Muscle: 7 of 43

muscles). These muscles were generally constrained to zero activation for about half of the

directions (e.g. Fig 4, left column, anterior-superior directions) and to full activation for the

Fig 3. Feasible force set sensitivity and robustness to loss of Vasti and Hamstring muscles in grouped and ungrouped

muscle models. Feasible force set sensitivity and robustness to single muscle loss of selected grouped muscles from Lo-

Muscle, (A) VAS and (D) HAM. Feasible force set sensitivity and robustness to single muscle loss of the independent

muscles from Int-Muscle corresponding to the grouped muscle from Lo-Muscle, (B) VM, VI, and VL and (E) SEMIMEM,

SEMITEN, and BFLH. (C) and (F) Feasible force set sensitivity and robustness to the loss of the group of corresponding

independent muscles from Int-Muscle (“grouped muscle loss”).

https://doi.org/10.1371/journal.pone.0219779.g003
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remaining directions (e.g. Fig 4, left column, posterior-inferior directions). Differences in

these muscles’ constrained activations across models were minor.

Most muscles were fully constrained in some maximum sagittal plane force directions, but

unconstrained in others (e.g. Fig 4, VAS and TA). These muscles were often constrained to

have zero activation in some directions, and maximal activation in the opposite direction.

However, they could adopt a range of activation level in other directions (e.g. Fig 4, VAS and

TA).

In some cases, undetermined feasible muscle activation ranges were unconstrained
(width = 1, green shaded area covers the entire area between the inner and outer circles) mean-

ing that activation of muscle can be any value between 0 and 1 during maximum force produc-

tion in that direction. The percentage of sagittal plane force directions with undetermined

feasible muscle activation ranges in at least one muscle was high in all models and only slightly

increased due to increased model complexity (Lo-Muscle/Lo-DoF: 86%, Hi-Muscle/Hi-DoF:

89%). Most undetermined feasible muscle activation ranges were also unconstrained.

Grouping muscles greatly limited the width of the unconstrained feasible muscle activation

ranges and affected the directions for which they were constrained or unconstrained (e.g. Fig

4, VAS). The range of directions in which muscles were unconstrained varied from most direc-

tions (e.g. TA) to approximately half of the directions (e.g. VAS).

Fig 4. Feasible muscle activation ranges for maximum forces for selected muscles. (A) Feasible muscle activation ranges for the maximum sagittal plane forces for an

example muscle, MEDGAS, in the Hi-Muscle/Hi-DoF model. The inner black circle represents a muscle activation of zero and the outer black circle represents a muscle

activation of one, i.e. maximal activation. Each radial line between the two black circles corresponds to the feasible muscle activation range for a maximum force along

that direction in the sagittal plane (right: anterior, up: superior). The minimum and maximum feasible activations for the maximum force in each direction in the sagittal

plane are indicated in green. Feasible muscle activation ranges are either determined, i.e. with only one feasible solution, indicated by a solid green line (e.g., see posterior

force directions in A), undetermined, i.e. with more than one feasible solution, indicated by a green shared area between the lines representing minimum and maximum

feasible muscle activations (e.g., see anterior forces in A), or unconstrained (a subset of undetermined), i.e. where all solutions are feasible, represented by green shared

areas that span completely from the inner to the outer black circles (e.g., see inferior forces in A). (B) Feasible muscle activation ranges for selected muscles (columns) in

six models of varying complexity (rows).

https://doi.org/10.1371/journal.pone.0219779.g004
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Discussion

Our work suggests that debates about the degree of musculoskeletal redundancy in the muscu-

loskeletal systems likely arise from difference in model complexity in prior studies. We show

that the impact of simulated muscle dysfunction using musculoskeletal models depends greatly

on kinematic complexity and numbers of independent muscle groups. Removing non-planar

DoFs increases model redundancy, decreasing the effect of muscle dysfunction on motor out-

put. By contrast, reducing the number of independent muscles or muscle groups decreases

musculoskeletal redundancy, amplifying the effects of muscle dysfunction. As a rule of thumb,

a ratio using the number of muscles-to-joints may be useful to compare the redundancy of

musculoskeletal models as well as real biomechanical systems.

Removing a kinematic DoF from a musculoskeletal model either increases the maximum

endpoint force in a given direction, or leaves it unchanged, leading to an increase in redundancy.

Conversely, if a DoF is created or unlocked, maximum endpoint force magnitudes can only

decrease or remain the same. Accordingly, we found that feasible force sets from planar models

were more robust to the loss of a single muscle than feasible force sets from 3D models with the

same set of muscles. One of the most impactful simplifications was locking the two non-planar

DoFs of hip rotation. In the planar model, only the contributions of hip muscle to sagittal plane

forces remained, without regard for their out-of plane contributions to endpoint force.

Removing a muscle from a musculoskeletal model either decreases the maximum endpoint

force in a given direction or leaves it unchanged, leading to a decrease in redundancy. When a

muscle is removed, it decreases the torque capacity of one or more DoFs, decreasing the maxi-

mum endpoint force in all direction limited by the torque capacity at those DoFs, and thus

muscle redundancy. Conversely, adding a muscle allows all maximum forces limited by the

torque capacity the DoF the muscle crosses to increase in magnitude. Accordingly, we found

that maximum force production in models with fewer independently-controlled muscles was

less robust to than models with more muscles but the same DoFs; grouping muscles drastically

reduced the robustness of the feasible force sets.

As a rule of thumb, the higher the ratio of muscle to kinematic DoFs, the greater the muscu-

loskeletal redundancy, reducing the effects of muscle dysfunction. We further propose that

muscles-to-DoFs ratio in the form of (# of muscles)/(# of kinematic DoF+1) can be a useful

measure for estimating musculoskeletal redundancy; this form accounts for the fact that mini-

mum number of tension-only actuators (e.g. muscles) to fully actuate a N-DoF serial manipu-

lator (e.g. leg) is N+1 [23, 24]. For example, our modified OpenSim leg model [17]–the most

complex model used in this study–had muscles-to-DoFs ratio of 5.4 and demonstrated ample

redundancy. This model was similar to that used to demonstrate that almost any single muscle

can be completely activated or deactivated while still generating joint torques in human walk-

ing [8, 9]. In contrast, the model with smallest number of muscles and higher kinematic com-

plexity had a muscle-to-DoFs ratio of 1.8, and was very sensitive to muscle dysfunction,

similar to prior results [10]. A human index finger model verified in cadaveric studies had a

muscles-to-DoFs ratio of 1.4 [10–12], and demonstrated high sensitivity to muscle loss. While

our analysis was based on leg models, muscles-to-DoFs ratio of most actuated subparts of the

human musculoskeletal system, including arm [25], fingers [6, 12], and spine [26, 27]fall

within the range we examined (Table 2). Therefore the number of muscles and DoFs may

explain discrepant results regarding the degree of redundancy in musculoskeletal systems.

However, the muscle-to-DoFs ratio is only a rule of thumb and care needs to be taken when

examining its relationship to paricular aspect of the degree of redundancy, which will depend

on the specific anatomy, posture, and the actions of muscles crossing the kinematic DoFs

[28–31].
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Although we limited our comparison of musculoskeletal model redundancy to a static,

maximal force generation in the sagittal plane, our results likely extend to non-planar,

dynamic, and submaximal motor tasks. Human leg feasible force set is expected to have high-

est aspect ratio in the sagittal plane [13], where the shape and orientation may be sensitive to

model parameters. However, our previous work in a cat hindlimb model that had complexity

(muscles-to-DoFs ratio: 3.9) within the range of human limb models examined here suggests

that the overall shape and magnitude of feasible force set in models with such level of complex-

ity are not sensitive to model architectural and morphological parameters [21]. We made data-

set and linear models for generating three-dimensional feasible force set available for use [16]

in examining feasible force set in other motor tasks where force production in non-sagittal

plane can be important, e.g. for stabilitization in the frontal plane during standing balance [34]

or locomotion [35]. Motor tasks requiring submaximal forces, on the other hand, are generally

expected to confer greater robustness, and thus a higher degree of musculoskeletal redun-

dancy. Owing to linear construction of our models (Eq 1), the feasible forces we calculated

encapsulate force production at any level [36]. Impact of muscle dysfunction in force produc-

tion task at 50% of maximum level, for example, can thus be readily depicted by comparing

the robust area to the smaller feasible force set, i.e., geometrically scaled by 50% in all direc-

tons. Redundancy in muscle space, as quantified by feasible muscle activation ranges, are

expected to be greater in all models, as constained bounds in most muscles tend to emerge

near maximal force production [15, 37]. We have indeed found that feasible muscle activation

ranges for all muscles in all models were wider at 50% of maximum force, with many feasible

muscle activation ranges that were fully determined at maximum force in all directions becom-

ing fully unconstrained at 50% of maximum force in all directions (data available in [16]), fur-

ther supporting our findings of wide feasible muscle activation ranges for maximal force

production. Incorporating dynamics in a submaximal task, wide feasible muscle activation

ranges have been demonstrated in a complex model of human gait [9], indicating that single

muscles could be removed without loss of function [8, 38]. Similarly, a three-dimensional

upper extremity model demonstrated that during manual wheechair propulsion, substantial

reduction in strength of individual muscles can be compensated by other muscles [39].

Finally, our results highlight that musculoskeletal biomechanics are often insufficient to

determine muscle activity even in maximal force production tasks, allowing for variations in

neural strategies for muscular force production. The sensitive region of a feasible force set to

loss of a single muscle comprises all the force directions and magnitudes where the muscle is

Table 2. Redundancy in representative models of subpart of the locomotor system.

Modeled subpart Total Mean±std # of muscles per DoF Minimum # of muscles per DoF Redundancy measure

Lower extremity [32] 7 DoF a) 43 muscles 17±8.7 4 5.4

Upper extremity [25, 33] 7 DoF b) 50 muscles 22±3.4 18 6.3

Thumb [6] 5 DoF 8 muscles 6.0±2.2 c) 2 1.3

Index finger [12] 4 DoF 7 muscles 5.3±0.4 5 1.4

Neck (Cervical spine) [26] 6 DoF 26 muscles 7.7±0.9 6 3.7

Lumbar spine [27] 3 DoF d) 210 (22 e)) muscles 204±2.8 (22) 202 (22) 52.5 (9.1)

a) Translational DoF of patella constrained as a function of knee flexion angle.

b) Simplified to only include DoF proximal to wrist, i.e., excluding hand and fingers. Scapula and clavicle DoF constrained as a function of shoulder DoF.

c) Considering also actions of muscles via proximal and terminal tendon slips.

d) DoF of 5 lumbar intervertebral joints constrained to be proportion of the total lumbar movement in each rotational DoF.

e) If 210 muscle fascicles modeled are grouped into 22 muscle groups (11 on each side), assuming common neural inputs to each group.

https://doi.org/10.1371/journal.pone.0219779.t002

Model complexity influences robustness to muscle dysfunction

PLOS ONE | https://doi.org/10.1371/journal.pone.0219779 July 24, 2019 12 / 16

https://doi.org/10.1371/journal.pone.0219779.t002
https://doi.org/10.1371/journal.pone.0219779


necessary to generate the maximal force [15]. However, feasible muscle activation ranges,

which explicitly identify the degree of possible variation in a single muscle’s activity [40], were

largely unconstrained in many cases, demonstrating the biomechanical latitude that the ner-

vous system has when selecting muscle activation patterns for the same motor task. As such,

multiple functional criteria such as stability, resistance to fatigue, or generalizability [41–43],

rather than single optimality [38, 44–49], may underlie the diversity in muscle activation pat-

terns observed across individuals with varying motor training or neurological health [50].
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